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The absolute or convective character of inviscid instabilities in parallel shear flows 
can be determined by examining the branch-point singularities of the dispersion 
relation for complex frequencies and wavenumbers. According to a criterion developed 
in the study of plasma instabilities, a flow is convectively unstable when the 
branch-point singularities are in the lower half complex-frequency plane. These 
concepts are applied to a family of free shear layers with varying velocity ratio 
R = AU/2V,  where AU is the velocity difference between the two streams and Utheir 
average velocity. It is demonstrated that spatially growing waves can only be 
observed if the mixing layer is convectively unstable, i.e. when the velocity ratio is 
smaller than Rt = 1.315. When the velocity ratio is larger than R,, the instability 
develops temporally. Finally, the implications of these concepts are discussed also 
for wakes and hot jets. 

1. Introduction 
Linear stability theory has been extremely successful in predicting many essential 

features of the initial development of a variety of flow instabilities. In  any such 
comparison one has to choose between temporal theory and spatial theory. In  
temporal stability calculations it is implicitly assumed that disturbances evolve in 
time from some initial spatial distribution. The wavenumber k is taken to be real and 
the goal of linear theory is then to determine the complex frequency w as a function 
of k. This point of view is usually adopted in theoretical investigations of Taylor- 
Couette flow and Rayleigh-BBnard convection. However, in the study of parallel-flow 
instabilities such as free shear flows and boundary layers, the instability process is 
very often controlled by periodically forcing the flow at a given frequency. Experi- 
mental results then seem to follow much more closely the predictions of spatial 
theory, where the frequency w is real and the wavenumber k is complex. 

The basic purpose of the present investigation is to describe a methodology that, 
for any flow configuration, determines whether spatial stability theory is applicable. 
The study is presented in the particular framework of the linear instability of inviscid 
parallel shear flows. The application of the results to a one-parameter family of mixing 
layers clearly demonstrates that one cannot rely merely on physical intuition to 
decide if spatial waves are relevant. 

We shall follow the terminology introduced by Briggs (1964) and Bers (1975) in 
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FIQURE 1. Sketch of a typical impulse response : (a) absolutely 
unstable flow; (a) convectively unstable flow. 

the study of plasma instabilities and distinguish between absolutely unstable media 
and convectively unstable media (see also Drazin & Reid 1981, $24). The impulse 
response, or Green function g (see $2), of a flow is first defined as the instability-wave 
field generated by a Dirac delta function in space and time. A flow is then absolutely 
unstable if its impulse response (figure 1 a)  becomes unbounded for large time at all 
points. A flow is convectively unstable if its impulse response (figure 1b)  decays to 
zero for large time a t  all points in the flow. I n  other words, in absolutely unstable 
flows the presence of a transient disturbance at any location leads, in the linear regime, 
to  exponential growth everywhere. By contrast, in convectively unstable flows 
disturbances are convected away as they amplify, eventually leaving the basic flow 
undisturbed. We note that, in agreement with these definitions, experimenters take 
extreme care in introducing a probe in any absolutely unstable system such as 
Taylor-Couette flow or BBnard convection. Any small disturbance could dramatically 
alter the nature of the flow. 

A clarification of the role of spatially growing modes can then be obtained from 
a study of the signalling problem ($ 3), where instability waves are periodically forced 
at a specific location. I n  the absolutely unstable case any transients generated by 
switching on the excitation or any residual background fluctuations will amplify and 
contaminate the entire flow, thereby leading to a zero signal-to-noise ratio. In  the 
convectively unstable case, however, these transients and background fluctuations 
are convected downstream, and spatially growing waves at the excitation frequency 
can be observed. Hence spatially growing waves are only meaningful physically in 
convectively unstable flows. It can also be concluded that a choice between spatial 
and temporal (or more precisely non-spatial) theory can be made once the absolute 
or convective nature of the instability has been determined. 

According to the criterion ($2) derived in a general context by Bers (1975), a flow 
is convectively unstable if the modes of complex frequency and wavenumber, which 
have a zero group velocity, are all temporally damped, i.e. the corresponding complex 
frequencies are all in the lower half o-plane. A satisfactory answer to the present 
problem therefore requires not only knowledge of the properties of temporal and 
spatial waves, but also knowledge of the singularities of the dispersion relation for 
complex frequencies and wavenumbers. 

The asymptotic behaviour of the impulse response in boundary layers, as calculated 
by Gaster (1968, 1975, 1980), has provided an accurate description of the evolution 



Absolute and convective instabilities in shear layers 153 

of wave packets in the linear regime. We must point out, however, that the concepts 
of absolute and convective instability have not been extensively used in hydrodynamic- 
stability investigations (for an application to a geophysical flow, see Merkine 1977). 
It is felt that they allow a rigorous justification of the use of spatially growing waves, 
as discussed in more detail in $3, and lead to a convenient and physically meaningful 
( 5  5 )  classification of possible linear instabilities. 

2. A criterion for convective or absolute instability 
In this section the calculation of the asymptotic impulse response is first outlined. 

A criterion is then developed that unambiguously determines whether a given 
velocity profile is convectively or absolutely unstable. 

The approach follows the formulation of the initial-value problem adopted by Case 
(1960) and Drazin 6 Howard (1966) for a homogeneous fluid. The case of a stratified 
fluid has recently been examined by Chimonas (1979) and Brown & Stewartson (1980). 
The instability is assumed to be inviscid and governed by the usual linearized 
two-dimensional vorticity equation, written in terms of a perturbation stream 
function. The variables x and y denote the streamwise and cross-stream directions 
respectively and t is the time variable. By definition the impulse response or real Green 
function g(x, y, t ;  yo)  pertaining to the velocity profile U(y) satisfies the forced 
equation 

which, for unbounded mixing layers, must be supplemented by requiring exponential 
decay of g as y + f co . The Dirac delta functions represent a point source at x = 0, 
y = yo and the response is required to be causal, i.e. g = 0 when t < 0. If g is known, 
the response of the flow fo an arbitrary source distribution s(x, y, t )  can be obtained 
by convolution of s and g. 

With the real function g(x, y ,  t ;  yo), we associate the complex Green function 
G(x, y, t ; yo) with g as real part and the Hilbert transform of g as imaginary part. Using 
the notation f * g for the spatial convolution 

G is defined by 

The complex Green function G essentially generalizes to an arbitrary wavenumber 
distribution, the complex representation commonly adopted for distributions con- 
taining a single wavenumber : its Fourier transform in wavenumber space is zero for 
negative wavenumbers. Furthermore, the physically meaningful real Green function 
g is obtained from G as 

g = ReG. (3) 

For convenience all calculations will be performed on G, which can easily be seen to 
satisfy 

r 1 1  
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FIQURE 2. Paths of integration of the inverse Fourier transforms (5) and (6): 
(a) complex-frequency plane ; ( b )  complex-wavenumber plane. 

Fourier-transform pairs in space x and time t are then introduced, according to the 
definitions 

and 

G(x, y, t ;  yo) = 2 7 ~  d(k, y, t ;  yo) eikzdk, 1, (5 )  

In (5 ) ,  d = 0 when k < 0, and the path F in the plane of complex wavenumbers k 
is initially taken to be the positive real-k axis. In order to apply the method of steepest 
descent, it will be closed at infinity by a quarter-circle in the upper half k-plane (x > 0) 
or lower half k-plane (z c 0), as shown in figure 2(b). The contour L in the plane of 
complex frequencies w is chosen to be a straight line lying above all the singularities, 
so as to satisfy causality. When t > 0 it  is closed by a semicircle below L, as indicated 
in figure 2 (a). 

Application of the transforms (5) and (6) to (4) leads to the forced Rayleigh 
equation 

A 
with G being exponentially small at  y = & co. The quantity c = o/k is termed the 
complex phase velocity or phase velocity in short and H(k) denotes the Heaviside 
unit step function. The solution of (7) is, within a constant of proportionality, the 
Green function of the Rayleigh equation 

where @+ and @- are solutions of the Rayleigh equation which decay exponentially 
as y+ + oc) and y-f - co respectively. The Wronskian D(w, k ;  yo) of @+ and @-, when 
set equal to zero, is nothing but the complex dispersion relation satisfied by the 
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discrete eigenvalues of the Rayleigh equation. At this point it also becomes clear why, 
in the above derivations, the wavenumber k has to be restricted explicitly to values 
with positive real part whichhagain, is always possible for real signals. The reason is 
that, for unbounded flows, G is in general non-analytic in k on the imaginary axis 
k, = 0. This non-analyticity stems from the boundary condition far away from the 
centre of the shear layer where @* - exp [ T sgn (k,) ky] as y -+ & 00. 

The inverse Fourier transform (6) can now be evaluated by distinguishing two types 
of singularities in the lower half w-plane bounded by L. One may first note that the 
functions @+ and 0- have in general a logarithmic singularity at the critical point 
where U(y) = c. For a given value of k, y or yo this corresponds to a logarithmic branch 
point a t  G(k ,  y) = kU(y) ,  the branch cut being chosen to lie below L as sketched in 
figure 2(a) .  The other singularities are poles arising from the zeros of D(w, k; yo), i.e. 
the temporal eigenvalues, since k is real on F. In the case of a free shear layer with 
one inflection point there is, for k real, one unstable eigenvalue w,(k) and one stable 
eigenvalue w,(k).  In  the purely inviscid case the two branches w,(k)  and w,(k) are 
complex conjugate (Drazin & Howard 1966). This symmetry no longer holds if w,(k)  
and w,(k)  are considered to be the limit of their viscous counterparts for infinite 
Reynolds number (Tatsumi, Gotoh & Ayukawa 1964). We shall consider only the 
latter situation and assume that our solution must satisfy the equivalent Orr- 
Sommerfeld problem in the limit of infinite Reynolds number. 

At a given wavenumber k the inverse Fourier transform (6) is the sum of two 
distinct terms : the continuous-spectrum contribution arises from the integral 

along the branch cut r issuing from r j (k) .  The discrete-spectrum contribution, which 
is composed of the sum of the residues evaluated at the zeros of D(w, k), takes the 
form 

where $,(y; k) is the eigenfunction associated with the temporal eigenvalue w,(k).  
Brown & Stewartson (1980) have shown that, in a stratified flow of constant shear, 
the continuous spectrum decays, in the limit of zero Richardson number, as O(t-,) 
for t -+ co. By contrast, the discrete-mode part (10) of the solution grows exponentially 
with time at the temporal amplification rate wli(k), provided that k is in the unstable 
range of wavenumbers. For our purposes, we shall neglect the continuous spectrum 
and the exponentially decaying solution in (10). The leading behaviour of the impulse 
response is then obtained by applying the inverse Fourier transform (5 )  to the first 
term in (10) so as to read 

The method of steepest descent can now be applied to (11) in a manner similar to 
that described by Gaster (1968). The original path of integration F is deformed into 
two steepest-descent paths emanating respectively from the integral boundary point 
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k = 0 and the saddlepoint (k*, w * ) ,  given by 

P. Huerre and P. A. Monkewitz 

The leading-order contribution arising' from k* and k = 0 have been evaluated 
according to the general formulas given in Bender & Orszag (1978). The Green 
function takes the form of a wavepacket in the (x, t)-plane. Inside the packet the 
saddlepoint contribution is exponentially large and dominates the algebraically 
decaying k = 0 term in (13). Thus, among all the wavenumbers contained in the 
impulsive source, the flow selects, along each ray x/t = const., one particular complex 
wavenumber k* given by (12). The group velocity is then real and equal to z/t, and 
the temporal amplification rate of the wavenumber k* along the ray reduces to 
u = wli(k*)-k:(dw,/dk) (k*). In  the (2, t)-plane of figure 1, the wave packet is 
confined within a wedge bounded by the two rays of zero-amplification rate. Out- 
side this wedge disturbances are algebraically decaying as given by the second term 
in (13). In the wedge they grow exponentially. 

The nature of the instability may now be determined from figures 1 (a) and (b) by 
simple qualitative reasoning. In  an absolutely unstable flow (figure 1 a) the edges of 
the packet travel in opposite directions, while the wavenumbers in its interior amplify 
exponentially. The ray x/t = 0 (the vertical axis in figure 1)  must therefore be within 
the unstable wave packet. The associated complex wavenumber k,, which by 
definition (12) has zero group velocity (dwl/dk) (k,) = 0, must satisfy wli(k,) > 0. 
Conversely, in a convectively unstable flow, the edges of the packet travel in the same 
direction, e.g. in the positive-x direction as shown in figure 1 (b). The ray x/t = 0 must 
now lie outside the wedge and the wavenumber k, should satisfy wli(k,) < 0. 
However, if (dq/dk) (k,) = 0, the frequency w, = wl(k,) is, in general, an algebraic 
branch point of order two. Thus we arrive at the criterion put forward by Bers (1975) : 
for an unstable flow to be convectively unstable, the branch-point singularities of its 
dispersion relation must lie in the lower half of the w-plane. Otherwise, the system 
is absolutely unstable. 

3. The signalling problem 
To determine in which physical situations spatially growing waves are relevant, 

it  is appropriate to consider the response of a parallel flow to a sinusoidal input of 
frequency up, a t  x = 0, y = yo, and switched on at  t = 0. The same problem has been 
investigated by Gaster (1965) for the forced Orr-Sommerfeld equation. Techniques 
similar to those described below have also been used by Tam (1978) to study the 
receptivity of shear layers to sound waves. 

The perturbation stream function $(x, y, t ;  yo) is now given by 

9[$1 = w - Yo) cos (UP t )  H ( t ) -  (14) 
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As in $2, we consider instead the complex stream function 
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which satisfies 

with the real response $ being related to Y by the formula $ = R e  Y. Upon 
application of two successive Fourier transforms (5) and (6), (15) becomes 

From (8), one immediately infers that the solution of (16) is 

The evaluation of p(k, y ,  t ;  yo)  by contour integration in the o-plane leads us to 
distinguish different elements in the response. The transient part is composed of the 
discrete and continuous spectra associated with the singularities of 8 (see $2). The 
'steady-state' response arises from the additional poles at w = l w f .  If the flow is 
absolutely unstable, the transient contribution will progressively overwhelm the 
'steady-state' response at all points in the flow, thereby making the signalling 
problem physically meaningless. However, if the flow is only convectively unstable, 
transients will gradually move away from the source leaving a genuine observable 
steady-state signal. In  this section we shall, henceforth, assume the instability to be 
convective and ignore the transient portion of the response. The residues of (17) 
arising from the poles at w = +wf yield 

~ ( k ,  y ,  t ; yo)  - +[&i, y ,  wf ; yo)  e-imft + 8 ( k ,  y ,  -of; yo)  eiwft]. (18) 

The inverse Fourier transform ( 5 )  can now be performed by contour integration 
in the k-plane. The poles of (18) are readily identified as the zeroes of D( f wf, k), i.e. 
the spatial eigenvalues k( f wf). To avoid some possibly confusing general notation 
we restrict the following discussion to the class of mixing-layer-velocity profiles 
considered in the next section. For these profiles there are three branches of spatial 
eigenvalues, k f ( w ) ,  k;(o) and k$(o) ,  which are representative of the types of 
eigenvalues found in more complex flows. The first two roots, kF(w) and k;(w),  
correspond in the w-plane to the two Riemann sheets of the square-root singularity 
of the amplified branch wl(k ) .  The last root kh(w) is the inverse of the stable branch 
w,(k)  studied by Tatsumi et al. (1964). Some care needs to be exercised to determine 
which branches contribute on each side of the forcing location at x = 0. Recall that 
the paths of integration were initially chosen according to the sketches in figures 2 ( a )  
and (b) .  As pointed out by Bers (1975), the initial contour L in the w-plane can always 
be placed high enough so that, when w is on L, some of the branches (in our case k:(w) 
and k i ( w ) )  are in the upper-right quarter-plane and the third branch k;(w) is in the 
lower-right quarter-plane. As L is gradually displaced downward to coincide with the 
real-w axis, the curves k:(w) and ky(w)  move towards each other in the k-plane. In 
fact, when w becomes real, part of the branch k:(o) necessarily lies below the real-k 
axis so as to give a band of spatially unstable frequencies (figures 3a and b ) .  The loci 
of the spatial roots in this figure 3 are taken from the example to be discussed in the 

6-2 
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FIQURE 3. Paths of integration of the inverse Fourier transforms (5) and (6) after deformation of 
L onto the w,-axis: (a) complex-frequency plane; ( b )  complex-wavenumber plane. ---, loci of 

k;(w) for w < 0. 
kT(w) and k;(w) for o > 0 (from the example of figures 7 and 8 with R = 1.3); -.-.- , locus of 

next section. I n  this process one must correspondingly deform the original path of 
integration F of figure 2(b) so as to  stay below kF(w), j = 1 ,2 .  The calculation of the 
inverse Fourier transform of (18) along F then proceeds in a straightforward manner. 
When x > 0, .the path of integration F is deformed into a steepest-descent path, 
k, = 0, ki > 0, issuing from the integration boundary k = 0 (see figure 3b) .  In the limit 
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z++ co there will be two leading-order contributions : an algebraically decaying term 
arising from the integration boundary k = 0 and exponentially growing and decaying 
modes associated with the residues of the poles kT(w,) , j  = 1,2. In the limit x+- co, 
the path F is deformed into the steepest-descent contour, kr = 0, ki < 0, issuing from 
k = 0 and similar considerations hold. The final result for I x I -+ 00 is : 

The spatial eigenfunctions are denoted by #?, j = 1,2, and 6; respectively. Since the 
real response ~ is obtained from !P by taking the real part of (19), the purely 
imaginary algebraic term due to k = 0 has no physical significance. The above 
reasoning presents the advantage of uniquely determining which spatial branches are 
pertinent to the domains x > 0 and z < 0. We conclude, as expected intuitively, that 
in a convectively unstable medium spatially growing waves are generated by steady 
periodic forcing in the range of unstable frequencies. 

4. Application to a family of mixing layers 
In order to illustrate the procedure, the criterion of $2 has been applied to parallel 

free shear layers described by the one-parameter family of velocity profiles 
U(y; R) = 1 + R  t anhh .  The cross-stream coordinate y and the velocity U are 
non-dimensional variables which have been scaled with respect to the momentum 
thickness and the average velocity between the two streams respectively. The 
parameter R is defmed here as the ratio of the difference and the sum of the velocities 
of the two co-flowing streams U,  and U,  : it is a measure of the magnitude of the shear. 
If 0 < R < 1 both streams run in the same direction, while for R > 1 they flow in 
opposite directions. In  the limiting case where R = 0 there is no shear, and, when 
R = 1, only one stream is present. 

Different complex pairs (0, k )  satisfying the dispersion relation D(w, k ;  R) = 0 ,  
were determined by numerical integration of the Rayleigh equation, L(#] = 0, 
together with exponentially decaying boundary conditions at y = _+ 03 [see Monkewitz 
& Huerre 1982 for details]. At each value of R, the point of zero group velocity, 
wo = wl(ko;  R )  satisfying (awJi3k) ( k o ;  R) = 0 ,  was located by searching for the zero 
of the function [ k f ( o ) - k ; ( w ) l 2  in the complex-w plane. It was checked that wo is a 
square-root singularity by verifying that I @ ( w )  - k;(w) I2 is locally a linear function 
of the distance from the branch point. As the velocity ratio R is varied, the point 
wo describes a curve in the complex-w plane as shown in figure 4. The associated 
parametric dependence of the real and imaginary parts uOr and woi on R is displayed 
in figure 5 .  The variations of the real and imaginary parts of the wavenumber, k,, 
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FIQURE 4. Locus of the branch point wo in the complex-w plane as a function of the velocity 
ratio R (in brackets). ---, large-R approximation (21). 
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FIQURE 5. Variations of wOr and woi with velocity ratio R. ---, large-R approximation (21). 

and k,,, are presented in figure 6. The curve of figure 4 crosses the real-w axis a t  
w, = 0.192, which corresponds to the velocity ratio R, = 1.315. When R < R,, the 
point w, lies in the lower half w-plane and we conclude that the mixing layer U ( y  ; R) 
is convectively unstable. When R > R,, w, is in the upper half w-plane and the mixing 
layer is absolutely unstable. Note that when R < 0.84 the branch point moves into 
the k, < 0 half-plane, a region which is of no interest for the evaluation of physical 
quantities. 

Large-R asymptotics of the functions w,(R) and k,(R) can easily be derived if one 
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FIGURE 6. Variation of k,, and kOi with velocity ratio R. ---, large-R approximation (22). 

notes that the dispersion relation is of the form 

w = k+RQ(k), (20) 

where Q(k) is the dispersion relation pertaining to U(y) = tanh (h). It is found that, 
as R+m, 

and 
1 d3Qi d2Qi -3 

(kmax)]-'+-[- 2R2 dk3 (kmax)] [= (kmax)] + O ( R P ) .  

(22) 

In the above formulae, kmax = 0.2225 is the real wavenumber of maximum temporal- 
amplification rate, Qpnax = SZi(kmax) = 0.09486, as obtained from a temporal-stability 
analysis [Michalke 1964) of the profile U(y) = tanh (h). Thus, to leading order, the 
characteristics of the branch point coincide with those of the most-amplified 
temporally growing wave. The large-R approximation is compared with the numerical 
results in figures 5 and 6. 

The configuration of the spatial branches kf and k; exhibits delicate changes with 
velocity ratio R, which directly affect the character of the response to a periodic 
excitation as given in (19). When R > 0.84, a square-root singularity with kor > 0 
is present in the complex-w plane. According to the discussion of 93, there exist two 
spatial branches kf(w) and k;(w) which are the inverse of the temporal solution w,(k). 
However, when 0.84 < R < 1, it  is found that, for real values of w ,  the branch k y ( o )  
lies entirely in the left half-plane k, < 0. Thus, in this range of values of R, the pole 
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FIGURE 7. Real part of the branches k: and k; vs. real w for R = 1.3: 0-0, k:; A-A, k;; 
0-0, k: ; --- , branch interchange for R = 1.4; . . . . . . . . . . ., analytic continuation into k, < 0 
(corresponding to solutions which become exponentially large as 1 y 1 + 00). 

I kl 

0 . 5 1  

I I 

-0.5 1 w  

FIGURE 8. Imaginary part of the branches k; and k; us. real w 
for R = 1.3. For symbols see figure 7. 

k; does not give rise to a residue in the evaluation of (19) and no disturbances are 
felt upstream of the source. But as soon as there is some counterflow, i.e. when R > 1, 
there exists a range of real frequencies, - 00 < w < w,, such that k,(w) > 0. The 
upper boundary w, of this interval is hereby defined by kJw,)  = 0. We conclude that 
the mode k; is present upstream of the source only when R > 1. Numerical 
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FIGURE 9. Locus of the critical points y:, and in the complex-y plane with w as parameter 
(in brackets). The symbols correspond to those of figures 7 and 8. 

experiments indicate that, as R 4 1, w,, is negative and, to leading order, proportional 
to In (R- 1). For R > 1.02, wu becomes positive. 

As an example, the variations with real frequency of all three eigenvalues kf, k; 
and kz have been plotted on figures 7 and 8 at R = 1.3, a value slightly less than 
Rt = 1.315. The trajectories of the corresponding critical points yEl, yi1 and y:2 in 
the complex-y plane are shown on figure 9. The first downstream branch k t  is unstable 
for frequencies between 0 and 0.5 with a maximum spatial amplification rate of 
-0.208, almost twice the value at R = 1.  The computation has been extended into 
the damped region w > 0.5 by deforming the integration path in the complex-y plane 
below the critical point &. This procedure is the spatial analogue of the approach 
used by Tatsumi et al. (1964) in the temporal case. It amounts to considering a fully 
viscous critical layer in the limit of infinite Reynolds number. In the same fashion, 
the second downstream branch ki is obtained by integrating below y:2 in the complex-y 
plane: it leads to damped disturbances downstream of the source at all excitation 
frequencies. Finally, the upstream branch k; is seen to have a positive real part and 
a negative imaginary part over the entire range w < wu(R = 1.3) = 0.226. Thus the 
amplitude of this upstream mode always decays exponentially away from the source. 
It is interesting to note that this branch contains modes with real phase velocities 
w / k ,  of both signs. When w > 0 the wave propagates in the downstream direction 
towards the source. It is therefore ‘amplified’ in t,he direction of propagation and the 
associated critical point yi1 lies in the upper half-plane (see figure 9). When w < 0 
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the wave is moving in the upstream direction. Thus i t  is ‘damped’ in the direction 
of propagation and the critical pointy, is in the lower half-plane. The results in this 
situation are again obtained by integrating below the critical point yil, i.e. by 
introducing a fully viscous critical layer. That this is possible has been verified by 
a local Stokes line analysis valid for small negative w .  At w = 0, the critical point 
lies on the real axis at y , ~  = In [ ( R -  l ) / (R+ l)]. This is a somewhat unusual example 
of a singular neutral mode with complex wavenumber : i t  is singular since the critical 
point yi1 does not coincide with the inflection point of the basic velocity profile and 
the eigenfunction has a logarithmic singularity at yil. It is also neutral since c is real 
(in fact equal to zero). 

To conclude this section i t  is noted that, as soon as the velocity ratio is raised above 
R,, making the flow absolutely unstable, the two branches k: and k; exchange their 
identity across the value wor(R) of the real frequency. This is illustrated in figures 7-9, 
where results a t  R = 1.4 are represented by dashed lines. When R increases above 
R,, the branch point wo moves into the upper half-plane and the value wor(R) is precisely 
the intersection point of the real-w axis with the branch cut emanating from wo. 

5. Further applications and concluding remarks 
From physical intuition, one might have expected the relevance of spatial theory 

to  be restricted to shear generated by streams moving in the same direction 
(0 < R < 1) .  According to  the results of the previous section, spatially growing waves 
are likely to  be observed in the presence of a small counterflow, as long as its 
magnitude I U, I is such that I U , / U l  I < 0.136. For any larger counterflow, the mixing 
layer is absolutely unstable and should be described in terms of temporally growing 
disturbances. 

In  most experimental studies on transitional shear layers (Browand 1966 ; Freymuth 
1966; Miksad 1972; Ho & Huang 1982), the basic flow is generated by the mixing 
of two streams of different velocity downstream of a splitter plate. I n  this case 
0 < R < 1 and spatial theory does compare very favourably with experimental 
observations. The case R > 1 could be realized by applying suction on the back face 
of a backward-facing step, an  experiment which has, to  our knowledge, not yet been 
tried. It is interesting to note that temporally evolving mixing layers can be obtained 
experimentally by tilting a tank filled with a stably stratified fluid (Thorpe 1971). 
I n  such a case, the initial Richardson number can be made small enough to warrant 
qualitative comparison with the unstratified analysis. These flows are such that 
R %  1.315 and are therefore absolutely unstable. The growth rates observed by 
Thorpe (1971) are found to be 25% lower than those predicted by temporal theory 
but the measured wavenumber is very close to the value for the most-amplified wave 
in a tanh shear layer. 

Other flows similarly defy physical intuition when one wishes to  establish whether 
they are absolutely or convectively unstable. However, an answer to this question 
is essential to  determine if a low-level control input, such as forcing applied at the 
trailing edge in a mixing layer with R < R,, can effectively influence the global 
development of the flow. We shall briefly discuss two other examples : wake flows and 
hot jets. 

Betchov & Criminale (1966) and Mattingly BE Criminale (1972) have previously 
analysed the branch point wo arising in the family of wake profiles 
U ( y ;  &) = 1 -& sech2y. From their results it can be inferred that the wake becomes 
absolutely unstable when Q > 0.94, i.e. below the value Q = 1 giving rise to a 
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counterflow in the centre of the wake. In  other words, wake profiles in the range 
0.94 < Q < 1 ,  which represent unidirectional flows with a positive velocity every- 
where, are nonetheless absolutely unstable! It was also noted in these investigations 
that at the branch point (w,, k,) the Wronskian D in (8) has a double zero. Thus, at 
(w,, k,), a non-trivial solution 8 can be obtained for zero pulse strengths, which 
indicates a resonance phenomenon analogous to acoustic organ-pipe resonance. The 
authors then conclude that the wake response should be primarily determined by this 
resonance, giving rise in general to an amplified (woi > 0) or decaying (woi < 0) wave 
at  a complex frequency w,. In a recent development of these ideas, Koch (1983, 1985) 
has convincingly shown, by comparison with experiments in the wake of a blunt 
trailing edge, that the response is dominated by a resonance at a real frequency w,. 
In Koch’s analysis, a quasi-parallel assumption is made in the measured-mean-velocity 
profiles to demonstrate that, owing to a gradual fill-up of the wake, the flow actually 
contains both absolutely and convectively unstable regions. The real resonance 
frequency is predicted by calculating the branch point (w,, k,) at the downstream 
station x,, where the flow makes a transition from absolute to convective instability. 
It should be recalled that at the branch point the group velocity is zero and some 
of the disturbance energy coming from upstream can be reflected at x,  as part of a 
feedback loop between the body and x,  (see e.g. the discussion in appendix B of 
Lighthill 1981). Thus it can be inferred that the local resonance at  5, is an essential 
link in a globaE resonance or self-sustained feedback loop. Finally, to strengthen a 
point made earlier, it  is worth mentioning that the dominant frequency in bluff-body 
wakes is relatively independent of the particular facility, i.e. its background 
turbulence intensity and spectral content. 

In  striking contrast to this relative insensitivity of wakes is the facility dependence 
of most free jets. Cold jets with R < 1 are convectively unstable and thus very 
sensitive to low-level forcing, as extensively documented in the literature. We wish 
to show how this situation can change dramatically when the jet is heated. Only a 
brief outline is given here with a more complete report by one of us (PAM) to follow 
later. The stability of a hot plug-flow jet bounded by a cylindrical vortex sheet has 
already been investigated by Michalke (1970) as a function of Mach number M and 
temperature ratio T*. The parameter T* is defined as the ratio between ambient and 
jet static temperatures (T* < 1 for a hot jet) and S, will denote the Strouhal number 
based on angular frequency w ,  jet velocity U, and jet diameter D.  The discussion is 
restricted to axisymmetric modes at M = 0. As shown on figure 10, adapted from 
Michalke’s figures 2 and 3, two modes exchange their identity across the value 8, x 3, 
when the temperature ratio T* decreases from 0.7 to 0.6. This behaviour is very 
similar to the interchange displayed in figures 7 and 8 for the family of mixing layers. 
It led us to believe that the jet becomes absolutely unstable if sufficiently hot. 
Indeed, it was confirmed numerically that, in analogy with the case of mixing layers, 
a square-root branch point crosses the real-S, axis at 8,. , = 3.052 as the temperature 
ratio T* decreases through the transition value Tt = 0.658. As T* decreases from 
0.7 to 0.6, the branch point moves into the upper-half S,-plane. Stability 
calculations conducted for a finite shear-layer-momentum thickness 8 by Michalke 
(197 1) suggest that the transition temperature ratio Tt is relatively independent of 
8 as long as @/D 4 1 (see Michalke’s figure 12). It is also noted in passing that, even 
for the cold jet, the (time-damped) branch point still has an effect by causing 
low-frequency disturbances to travel faster than the jet (see figure 6 of Bechert & 
Pfitzenmeier 1975). The arguments presented here may have implications for the 
control of noise in jets. For instance, only a strong tempering of the flow, such as 
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FIGURE 10. The wavenumbers k: and k; for axisymmetric disturbances on a compressible 
cylindrical vortex sheet (adapted from Michalke 1970) with M = 0 and T* = 0 .7 ;  0-0, k:; 
A-A, k;; ---, branch interchange for T* = 0.6. 

a daisy-type nozzle, is likely to alter the noise radiation characteristics of an 
absolutely unstable hot jet with T* < Tt. This type of nozzle does produce a cooler 
jet which, for T* > T,*, loses its region of absolute instability, thereby providing a 
possible explanation for the success of such a device. Finally, we speculate that the 
velocity ratio will also strongly influence the characteristics of hot jets. Situations 
are conceivable where an absolutely unstable hot jet on a test stand ( R  = 1 )  could 
become convectively unstable in flight (R < 1 ) ,  thus complicating further the 
problem of flight effects on jet mixing noise. 

Further applications of the reasoning outlined in this study are numerous. For 
instance, i t  is not entirely clear whether the presence of Gortler vortices along concave 
walls is the result of a temporal instability or of the spatial response to  a periodic 
forcing. The approach presented here might be able to  settle the issue. Finally, we 
note that the generalization of these concepts to nonlinear instability phenomena is 
an open question (see Weissman 1979 for a discussion of weakly nonlinear Kelvin- 
Helmholtz instability). 

P. Huerre wishes to acknowledge the financial support of the National Science 
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